

Goslate: Free Google Translate API

Note

Google has updated its translation service recently with a ticket mechanism to prevent simple crawler programs like goslate from accessing.
Though a more sophisticated crawler may still work technically, it would have crossed the fine line between using the service and breaking the service.
goslate will not be updated to break google’s ticket mechanism. Free lunch is over. Thanks for using.

	Simple Usage

	Installation

	Proxy Support

	Romanization

	Language Detection

	Concurrent Querying

	Batch Translation

	Performance Consideration

	Lookup Details in Dictionary

	Query Error

	API References

	Command Line Interface

	How to Contribute

	What’s New

	1.5.4

	1.5.2

	1.5.0

	1.4.0

	1.3.2

	1.3.0

	Reference

	Donate

goslate provides you free python API to google translation service by querying google translation website.

It is:

	Free: get translation through public google web site without fee

	Fast: batch, cache and concurrently fetch

	Simple: single file module, just Goslate().translate('Hi!', 'zh')

Simple Usage

The basic usage is simple:

>>> import goslate
>>> gs = goslate.Goslate()
>>> print(gs.translate('hello world', 'de'))
hallo welt

Installation

goslate support both Python2 and Python3. You could install it via:

$ pip install goslate

or just download latest goslate.py [https://bitbucket.org/zhuoqiang/goslate/raw/tip/goslate.py] directly and use

futures package [https://pypi.python.org/pypi/futures] is optional but recommended to install for best performance in large text translation tasks.

Proxy Support

Proxy support could be added as following:

import urllib2
import goslate

proxy_handler = urllib2.ProxyHandler({"http" : "http://proxy-domain.name:8080"})
proxy_opener = urllib2.build_opener(urllib2.HTTPHandler(proxy_handler),
 urllib2.HTTPSHandler(proxy_handler))

gs_with_proxy = goslate.Goslate(opener=proxy_opener)
translation = gs_with_proxy.translate("hello world", "de")

Romanization

Romanization or latinization (or romanisation, latinisation), in linguistics, is the conversion of writing from a different writing system to the Roman (Latin) script, or a system for doing so.

For example, pinyin is the default romanization method for Chinese language.

You could get translation in romanized writing as following:

>>> import goslate
>>> roman_gs = goslate.Goslate(writing=goslate.WRITING_ROMAN)
>>> print(roman_gs.translate('China', 'zh'))
Zhōngguó

You could also get translation in both native writing system and ramon writing system

>>> import goslate
>>> gs = goslate.Goslate(writing=goslate.WRITING_NATIVE_AND_ROMAN)
>>> gs.translate('China', 'zh')
('中国', 'Zhōngguó')

You could see the result will be a tuple in this case: (Translation-in-Native-Writing, Translation-in-Roman-Writing)

Language Detection

Sometimes all you need is just find out which language the text is:

>>> import goslate
>>> gs = goslate.Goslate()
>>> language_id = gs.detect('hallo welt')
>>> language_id
'de'
>>> gs.get_languages()[language_id]
'German'

Concurrent Querying

It is not necessary to roll your own multi-thread solution to speed up massive translation. Goslate has already done it for you. It utilizes concurrent.futures for concurrent querying. The max worker number is 120 by default.

The worker number could be changed as following:

>>> import goslate
>>> import concurrent.futures
>>> executor = concurrent.futures.ThreadPoolExecutor(max_workers=200)
>>> gs = goslate.Goslate(executor=executor)
>>> it = gs.translate(['text1', 'text2', 'text3'])
>>> list(it)
['translation1', 'translation2', 'translation3']

It is advised to install concurrent.futures backport lib in python2.7 (python3 has it by default) to enable concurrent querying.

The input could be list, tuple or any iterator, even the file object which iterate line by line

>>> translated_lines = gs.translate(open('readme.txt'))
>>> translation = '\n'.join(translated_lines)

Do not worry about short texts will increase the query time. Internally, goslate will join small text into one big text to reduce the unnecessary query round trips.

Batch Translation

Google translation does not support very long text, goslate bypasses this limitation by splitting the long text internally before sending it to Google and joining the multiple results into one translation text to the end user.

>>> import goslate
>>> with open('the game of thrones.txt', 'r') as f:
>>> novel_text = f.read()
>>> gs = goslate.Goslate()
>>> gs.translate(novel_text)

Performance Consideration

Goslate uses batch and concurrent fetch aggressively to achieve maximized translation speed internally.

All you need to do is reduce API calling times by utilizing batch translation and concurrent querying.

For example, say if you want to translate 3 big text files. Instead of manually translate them one by one, line by line:

import goslate

big_files = ['a.txt', 'b.txt', 'c.txt']
gs = goslate.Goslate()

translation = []
for big_file in big_files:
 with open(big_file, 'r') as f:
 translated_lines = []
 for line in f:
 translated_line = gs.translate(line)
 translated_lines.append(translated_line)

 translation.append('\n'.join(translated_lines))

It is better to leave them to Goslate totally. The following code is not only simpler but also much faster (+100x) :

import goslate

big_files = ['a.txt', 'b.txt', 'c.txt']
gs = goslate.Goslate()

translation_iter = gs.translate(open(big_file, 'r').read() for big_file in big_files)
translation = list(translation_iter)

Internally, goslate will first adjust the text to make them not so big that do not fit Google query API, nor so small that increase the total HTTP querying times. Then it will use concurrent queries to speed things even further.

Lookup Details in Dictionary

If you want detail dictionary explanation for a single word/phrase, you could

>>> import goslate
>>> gs = goslate.Goslate()
>>> gs.lookup_dictionary('sun', 'de')
[[['Sonne', 'sun', 0]],
 [['noun',
 ['Sonne'],
 [['Sonne', ['sun', 'Sun', 'Sol'], 0.44374731, 'die']],
 'sun',
 1],
 ['verb',
 ['der Sonne aussetzen'],
 [['der Sonne aussetzen', ['sun'], 1.1544633e-06]],
 'sun',
 2]],
 'en',
 0.9447732,
 [['en'], [0.9447732]]]

There are 2 limitations for this API:

	The result is a complex list structure which you have to parse for your own usage

	The input must be a single word/phase, batch translation and concurrent querying are not supported

Query Error

If you get an HTTP 5xx error, it is probably because google has banned your client IP address from transaction querying.

You could verify it by accessing google translation service in the browser manually.

You could try the following to overcome this issue:

	query through a HTTP/SOCKS5 proxy, see Proxy Support

	using another google domain for translation: gs = Goslate(service_urls=['http://translate.google.de'])

	wait for 3 seconds before issue another querying

API References

please check API reference [http://pythonhosted.org/goslate/#module-goslate]

Command Line Interface

goslate.py is also a command line tool which you could use directly

	Translate stdin input into Chinese in GBK encoding

$ echo "hello world" | goslate.py -t zh-CN -o gbk

	Translate 2 text files into Chinese, output to UTF-8 file

$ goslate.py -t zh-CN -o utf-8 source/1.txt "source 2.txt" > output.txt

use --help for detail usage

$ goslate.py -h

How to Contribute

	Report issues & suggestions [https://bitbucket.org/zhuoqiang/goslate/issues]

	Fork repository [https://bitbucket.org/zhuoqiang/goslate]

	Donation [http://pythonhosted.org/goslate/#donate]

What’s New

1.5.4

	handle deprecated threading.currentThread() properly

	add retry_wait_duration param to fine control the retry behavior in case of connection error

1.5.2

	[fix bug] removes newlines from descriptions to avoid installation failure

1.5.0

	Add new API Goslate.lookup_dictionary() to get detail information for a single word/phrase, thanks for Adam’s suggestion

	Improve document with more user scenario and performance consideration

1.4.0

	[fix bug] update to adapt latest google translation service changes

1.3.2

	[fix bug] fix compatible issue with latest google translation service json format changes

	[fix bug] unit test failure

1.3.0

	[new feature] Translation in roman writing system (romanization), thanks for Javier del Alamo’s contribution.

	[new feature] Customizable service URL. you could provide multiple google translation service URLs for better concurrency performance

	[new option] roman writing translation option for CLI

	[fix bug] Google translation may change normal space to no-break space

	[fix bug] Google web API changed for getting supported language list

Reference

Goslate: Free Google Translate API

	
exception goslate.Error

	Error type

	
class goslate.Goslate(writing=('trans',), opener=None, retry_times=4, executor=<concurrent.futures.thread.ThreadPoolExecutor object>, timeout=4, service_urls=('http://translate.google.com',), debug=False, retry_wait_duration=0.0001)

	All goslate API lives in this class

You have to first create an instance of Goslate to use this API

	Parameters

	
	writing – The translation writing system. Currently 3 values are valid

	WRITING_NATIVE for native writing system

	WRITING_ROMAN for roman writing system

	WRITING_NATIVE_AND_ROMAN for both native and roman writing system. output will be a tuple in this case

	opener (urllib2.OpenerDirector [http://docs.python.org/2/library/urllib2.html#urllib2.OpenerDirector]) – The url opener to be used for HTTP/HTTPS query.
If not provide, a default opener will be used.
For proxy support you should provide an opener with ProxyHandler

	retry_times (int) – how many times to retry when connection reset error occured. Default to 4

	retry_wait_duration (float) – how many seconds to wait before retry when connection reset error occured. Default to 0.0001s

	timeout (int/float) – HTTP request timeout in seconds

	debug (bool) – Turn on/off the debug output

	service_urls (single string or a sequence of strings) – google translate url list. URLs will be used randomly for better concurrent performance. For example ['http://translate.google.com', 'http://translate.google.de']

	executor (futures.ThreadPoolExecutor) – the multi thread executor for handling batch input, default to a global futures.ThreadPoolExecutor instance with 120 max thead workers if futures is avalible. Set to None to disable multi thread support

Note

multi thread worker relys on futures [https://pypi.python.org/pypi/futures], if it is not avalible, goslate will work under single thread mode

	Example

	>>> import goslate
>>>
>>> # Create a Goslate instance first
>>> gs = goslate.Goslate()
>>>
>>> # You could get all supported language list through get_languages
>>> languages = gs.get_languages()
>>> print(languages['en'])
English
>>>
>>> # Tranlate English into German
>>> print(gs.translate('Hello', 'de'))
Hallo
>>> # Detect the language of the text
>>> print(gs.detect('some English words'))
en
>>> # Get goslate object dedicated for romanlized translation (romanlization)
>>> gs_roman = goslate.Goslate(WRITING_ROMAN)
>>> print(gs_roman.translate('hello', 'zh'))
Nín hǎo

	
detect(text)

	Detect language of the input text

Note

	Input all source strings at once. Goslate will detect concurrently for maximize speed.

	futures [https://pypi.python.org/pypi/futures] is required for best performance.

	It returns generator on batch input in order to better fit pipeline architecture.

	Parameters

	text (UTF-8 str; unicode; sequence of string) – The source text(s) whose language you want to identify.
Batch detection is supported via sequence input

	Returns

	the language code(s)

	unicode: on single string input

	generator of unicode: on batch input of string sequence

	Raises

	Error if parameter type or value is not valid

Example:

>>> gs = Goslate()
>>> print(gs.detect('hello world'))
en
>>> for i in gs.detect([u'apple', 'apfel']):
... print(i)
...
en
de

	
get_languages()

	Discover supported languages

It returns iso639-1 language codes for
supported languages [https://developers.google.com/translate/v2/using_rest#language-params]
for translation. Some language codes also include a country code, like zh-CN or zh-TW.

Note

It only queries Google once for the first time and use cached result afterwards

	Returns

	a dict of all supported language code and language name mapping {'language-code', 'Language name'}

	Example

	

>>> languages = Goslate().get_languages()
>>> assert 'zh' in languages
>>> print(languages['zh'])
Chinese

	
lookup_dictionary(text, target_language, source_language='auto', examples=False, etymology=False, pronunciation=False, related_words=False, synonyms=False, antonyms=False, output_language=None)

	Lookup detail meaning for single word/phrase

Note

	Do not input sequence of texts

	Parameters

	
	text (UTF-8 str) – The source word/phrase(s) you want to lookup.

	target_language (str; unicode) – The language to translate the source text into.
The value should be one of the language codes listed in get_languages()

	source_language (str; unicode) – The language of the source text.
The value should be one of the language codes listed in get_languages().
If a language is not specified,
the system will attempt to identify the source language automatically.

	examples – include example sentences or not

	pronunciation – include pronunciation in roman writing or not

	related_words – include related words or not

	output_language – the dictionary’s own language, default to English.

	Returns

	a complex list structure contains multiple translation meanings for this word/phrase and detail explaination.

	
translate(text, target_language, source_language='auto')

	Translate text from source language to target language

Note

	Input all source strings at once. Goslate will batch and fetch concurrently for maximize speed.

	futures [https://pypi.python.org/pypi/futures] is required for best performance.

	It returns generator on batch input in order to better fit pipeline architecture

	Parameters

	
	text (UTF-8 str; unicode; string sequence (list, tuple, iterator, generator)) – The source text(s) to be translated. Batch translation is supported via sequence input

	target_language (str; unicode) – The language to translate the source text into.
The value should be one of the language codes listed in get_languages()

	source_language (str; unicode) – The language of the source text.
The value should be one of the language codes listed in get_languages().
If a language is not specified,
the system will attempt to identify the source language automatically.

	Returns

	the translated text(s)

	unicode: on single string input

	generator of unicode: on batch input of string sequence

	tuple: if WRITING_NATIVE_AND_ROMAN is specified, it will return tuple/generator for tuple (u”native”, u”roman format”)

	Raises

	
	Error (‘invalid target language’) if target language is not set

	Error (‘input too large’) if input a single large word without any punctuation or space in between

	Example

	>>> gs = Goslate()
>>> print(gs.translate('Hello World', 'de'))
Hallo Welt
>>>
>>> for i in gs.translate(['good', u'morning'], 'de'):
... print(i)
...
gut
Morgen

To output romanlized translation

	Example

	>>> gs_roman = Goslate(WRITING_ROMAN)
>>> print(gs_roman.translate('Hello', 'zh'))
Nín hǎo

	
goslate.WRITING_NATIVE = ('trans',)

	native target language writing system

	
goslate.WRITING_NATIVE_AND_ROMAN = ('trans', 'translit')

	both native and roman writing. The output will be a tuple

	
goslate.WRITING_ROMAN = ('translit',)

	romanlized writing system. only valid for some langauges, otherwise it outputs empty string

Donate

Donate now to help Goslate up-to-date and get better!

	PayPal: zhuo.qiang@gmail.com

	Alipay:

Index

 D
 | E
 | G
 | L
 | M
 | T
 | W

D

 	
 	detect() (goslate.Goslate method)

E

 	
 	Error

G

 	
 	get_languages() (goslate.Goslate method)

 	
 goslate

 	module

 	
 	Goslate (class in goslate)

L

 	
 	lookup_dictionary() (goslate.Goslate method)

M

 	
 	
 module

 	goslate

T

 	
 	translate() (goslate.Goslate method)

W

 	
 	WRITING_NATIVE (in module goslate)

 	
 	WRITING_NATIVE_AND_ROMAN (in module goslate)

 	WRITING_ROMAN (in module goslate)

 nav.xhtml

 Table of Contents

 		
 Goslate: Free Google Translate API

_static/file.png

_static/minus.png

_static/plus.png

